LegStar User Guide

LegStar User Guide
153

Copyright (C) 2014 LegSem

Thislibrary isfree software; you can redistribute it and/or modify it under the terms of the GNU L esser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

http://www.gnu.org/licenses/Igpl-2.1.html

http://www.gnu.org/licenses/lgpl-2.1.html

Table of Contents

O [gL oo (0 1o o R PP PPPPTI 1
WEE IS LEOSEAI? ..ttt ettt e e et e e et e e e 1
FEAIUNES OVEIVIEW ...ee ettt ettt ettt et e e e aa e e e eaans 1

Development tiMe FEALUINESovieii e 1
RUNEIME FEAIUMNESee ettt eeeans 1
COMMION USE CBSESevueerietet e eeie et et e et et et e e e et e et e et r et e e e e e e e e e e enens 2

2. ATCIITECTUE ... et e ettt ettt e et et e e e e et e e e ente e eeee 3

Expose a COBOL program as aWeb SEIVICEuueiieiiieieii et 3
DevelOPMENE TOOISeeeee e 3
RUNLIME SEIVICES ... ettt ettt e e e e e aa e 4

Consume a Web Service or POJO from a COBOL Programveeeeeenereeninnereniineeennnns 5
DevelOPMENE TOOISeeeee e 5
RUNLIME SEIVICES ... ettt ettt e e e e e aa e 5

S INSEBITALION ...t e e e e een 7

INSEAITING LEGSIAI ettt ettt ettt et e e e e e e enanns 7
PrETEOUISITES ...ttt 7
INSEBITING ..ttt 7
UNINSEAHTING ettt et e e e e e e e eeaens 9
Running the ant SampPIES ... e 9

Installing LegStar modules fOr Z/OScoiiiiiei e 11
PrETEOUISITES ...ttt e 11
INSEBITING ..t ettt e ene 11
Compile and link-edit LegStar Programsceeerueeerrieeeeii e et eeeei e eeniiaeeeens 13

Installing LegStar pluging for ECHPSEiiiiiiiee i 13
PrETEOUISITES ...ttt e 13
INSEBITING ..t ettt e ene 13
UNINSEAHTING ettt e e e e e e e e e e aees 14

A, USING LOOSHAE ..ottt ettt ettt e et e e e et e e e e e eee 15

USING BINE SCIIPLS .. eeett ettt ettt ettt e et e et e et e e ettt e e e e et e e e e ab e e e enaaes 15
Expose a COBOL program as a Weh Serviceovvvviiiiiiiiiiii e 15
Consume a Web Service from a COBOL Programueeeveeiineeeeiiineeeeiineeeeninnnes 17

USING ECHPSE PIUGINS ...ttt ettt e e e e e e e e e e e eeees 21
Expose a COBOL program as a Weh Serviceovvviiiiiiiiiiiiic e 21
Consume a Web Service from a COBOL Programueeeeeeiineeeeriineeeeiineeeennnnnns 32

LT L= o TN U o PP PT 44

AL COOE SNIPPELS ...ttt ettt e ettt e ettt et e e 45
Using generated tranfOrMErScoouuu ittt eaeans 45

Running Host/Java TransformMErscoouuuiiiiii et 45
Running HOS/ XML TransformerSveiiiiiiieiiiie e 46
Running HOS/JSON TransfOrmMErSc.uuuiiiiiiieiiii e 47

List of Figures

2.1. Service adapter deVElOPMENT SEEPSiieeiee ittt 3
2.2, Service adapter TUNLIMIEu ittt et e et e e e e e ene s 4
2.3. Service proxy deVElOPMENT SEEDPScuueu ittt ettt 5
2.4, SEIVICE PrOXY TUNTIME ...iiiti ittt ettt ettt e e ettt ettt et et e e e et e e e ena e e ennan s 6
4.1. LegStar menu and toolbar OPLIONS i 21
4.2. Adapter structures mapping SCreen SEIECE SOUMCEvvvvuiiiiiiii e 22
4.3. Adapter structures mappPiNg SCreeN EITOTcveeuuieiiii e 23
4.4. Adapter structures mappPiNg SCreeN FESUITSuuuiiiiiie e 24
4.5. Adapter COBOL Transformers generation MENUcoeuuureeertneeeeeiiaeeesiiaeeeniinaeeenineeeenns 25
4.6. Adapter COBOL Transformers generation parameters SCre io.u.eeeeeveunieeeneeeiieeieeeanneeees 26
4.7. Adapter COBOL Transformers generation SCreen reSUItSocvevvieeeeiiineeeiiiieeeeii e 27
4.8. Adapter service generation SCreen NEW OPEIAHIONc..uuiiirreneeieii e 28
4.9. Adapter service generation SCreen EAITONu.iiiiiiii e 29
4.10. Adapter service generation screen operation MaPPINGeeeerereeerrneeeeiiieeeeeireeeenieeeenns 29
4.11. Adapter service generation screen StructureS MapPPING «......oeeeeuererrenereeiiiereeii e reenieeeenens 30
4.12. Adapter service generation screen operation mapping dONEcoeevuieeeiiinieeeiiineeeeniieeeens 30
4.13. Adapter service generation Screen SEleCt targelvuveiiiii i 31
4.14. Adapter service generation SCreen ParaMELErSuuu e iiiri et ee et e et e et e e 31
4.15. Adapter service generation SCreen rESUITSuuiiiiiie i 32
4.16. Proxy WSDL structures mapping SCreen SEl€Ct SOUICEuuuviriineeiiiie et 33
4.17. Proxy XSD structures mapping SCreen €ditOrc.uuuiiiiriieeeii e 34
4.18. Proxy XSD structures mapping SCreen reSUITScoeuuuniiiiiiiieieii et 35
4.19. Proxy COBOL Transformers generation MENUoocieuuueeierineeierieeeeeniaeeeenia e eeiiaens 36
4.20. Proxy COBOL Transformers generation SCreen ParametersSvevveveeeeeevineeeeeiiieeeeeiiee 37
4.21. Proxy COBOL Transformers generation screen JAXB OptioNScc.vuevieiiieiiiiinieeciiieeeees 38
4.22. Proxy COBOL Transformers generation SCreen reSUItSvvveveneeeiiineeieiieeeeeie e 38
4.23. Proxy service generation SCreen NEW OPEIaHiONcveerureeertiieeeetiieeeeeiis e eeeiis e eeeiiaeeenns 39
4.24. Proxy service generation screen operation mapping doNeveeeevinieeeeiinieeeeiiieeeeiieeees 40
4.25. Proxy service generation SCreen SElECE talrgetovveveuieiiii et 40
4.26. Proxy Service generation SCreen PAraMELErScceeuuueeieiieeeteti e eeie et e e e e e e 41
4.27. Proxy Service generation SCreen FSUITSiieeii ettt e 42

Chapter 1. Introduction
What is LegStar?

LegStar provides development and runtime features for devel opers who need to integrate with mainframe
programs such as those written in COBOL.

Unlike other integration solutions available, LegStar is free and open-source. It leverages the ever-
increasing power of open-source software by using familiar programming patterns (visitor, strategy...),
frameworks (JAXB, JAX-WS), tools (Apache Ant, Eclipse) and targeting widely used J2EE servers such
as Apache Tomcat and Jetty or Enterprise Service Buses.

Features overview

Development time features

Activitiesinvolved in mainframe integration usually require:
» Mapping mainframe data structures to open world constructs such as Java classes or XML Schema.
» Mapping mainframe programs to open world processes (Web Service operations, Java methods, ...).

These mapping activities occur at development time and usually produce meta-data that can later be used
by runtime engines to flow requests and data between the mainframe application and the open world.

At the core of LegStar is an XML schemato COBOL binding language. This is similar in spirit to the
Javato XML Schemabinding language introduced by the JAXB standard. This COBOL binding language
materializes as XML schema annotations or Java annotations.

LegStar COBOL hinding language tries to cover all the real issues facing integration developers such
as how to map COBOL weakly typed variables to Java strongly typed ones, deal with complex
"REDEFINES", variable size arrays, code page conversions, numeric conversions and support for multiple
input/output programs (CICS Containers).

LegStar provides tooling to support data and process mapping activities. These tools are provided as ant
scripts but they are also available as arich set of plug-insfor the Eclipse platform.

Runtime features

Runtime mainframe integration activities can be separated into:

 Databinding activitieswhere data streamsin mainframe format are transformed to, or from, open world
objects such as Java classes or XML.

» Remote Procedure Call activities where mainframe programs are invoked, or call outbound open world
processes.

LegStar provides runtime capabilities for IBM CICS, where CICS programs act either as servers, serving
requests coming from the open world or as clients, calling remote Web or Java services.

The LegStar various modules are only loosely coupled and can be used in a large number of scenarios.
For instance, one can use the data binding capabilities without using the LegStar RPC mechanisms.

Introduction

Integration targets are not limited to Web Services. There are various projects using LegStar to integrate
directly with major ESBs or ETLs for instance.

Common use cases

The easiest way to present the LegStar architecture is to show how it supports two common integration
USe Cases:

1. An existing mainframe program, say aCOBOL CICS program, needs to be exposed as a Web Service.
2. A mainframe application needs to execute a remote Web Service.

Thefirst use case is very common but the importance of the second oneis growing rapidly aslegacy sub-
systems are being replaced by new applications running on J2EE and .Net platforms.

There is a large number of variations on these 2 main use cases, for instance developers might need to
expose legacy functionalities as REST rather than plain Web Services, or developers might need to map
complex structures to Java objects rather than XML . Devel opers might need to describe new structuresin
XML schema and then map these to Java and COBOL in support for two parallel developments (rather
than integration), etc. LegStar is modular so that features can be selected and combined as necessary.

Chapter 2. Architecture
Expose a COBOL program as a Web Service

Development tools

With LegStar, devel opers would follow these three steps to Service-enable a COBOL program:

Figure 2.1. Service adapter development steps

JAXB
XSD + Classes + Mainf
coBOL COBOL CoBOL i
fragment annotations annotations alp L
| LegStar LegStar | L

= egStar

e > COBOL Structures > @ coBOL IS E — Mainframe Service > @D

— to XML Schema — Transformers |

— = Generator

Translator Generator

In this use case, initiadl COBOL code fragments describe the legacy program input and output structures.

The LegStar COBOL Structuresto XML Schema Translator takesa COBOL fragment asinput and creates
an XML Schemawith COBOL annotations. This generated XML Schemais known as a Mapping XML
Schema since the COBOL annotations form the meta-data that maps each COBOL dataitem to an XML
element type.

Some COBOL programs accept several input structures and several output structures, each described by a
different code fragment. This step can therefore be repeated as necessary for each COBOL code fragment
involved.

Thegenerated XML Schema can be customized, and further annotated, by devel opersusing standard XML
Schema editors. In particular, developers can specify custom processing to deal with complex decisions
related with COBOL REDEFINES for instance.

The LegStar COBOL Transformers Generator takes aMapping XML Schema asinput and produces a set
of Java Classes. These generated classes are all that is needed for the runtime to perform Java, XML or
JSON to mainframe data marshaling/unmarshaling.

The meta data that binds javafieldsto COBOL dataitemsis stored as java annotations in a set of JAXB
classes.

At runtime, mainframe data described by theinitial COBOL fragment istypically encoded in amainframe
character set (EBCDIC) and contain compressed numerics and other mainframe specific formatted data.
Conversionistotally bi-directional and completely independent of the origin or destination of the host data.

The L egStar Mainframe Service Generator, maps amainframe program to aWeb Service operation or Java
method. The current version of LegStar supports CICS programs either Commarea or Container driven.

It is important to note that the tools behind each step are completely independent from each other. For
instance, without an initiadl COBOL code fragment, developers could start from an XML Schema, edit
the XML Schemato add COBOL binding annotations and then continue the remaining steps. Thisis not
an uncommon use case, where the mainframe program is actually new and the starting point is an XML
schema (An approach sometimes referred to as Contract-first).

Architecture

For each of these steps, LegStar provides both Ant scripts and Eclipse plug-ins. Moving forward, the
Eclipse plugins are the recommended tool as the parameter set needed by generators keeps increasing.

Runtime services

From a runtime perspective, this is how a request/reply message exchange would flow in an IBM CICS
environment:

Figure 2.2. Service adapter runtime

JAX-WS | JAXB JZEE server, Tomcat, Jotty LegStar +« HTTP
Mainframe ||, TCP Sockets
. Flaptor + WebSphere MQ

Web Bainirarme Runtime

- e JBXB value pgange Mainframe

.‘:-EI.vce payload objects payload

Client |

o5 @] Iy "%}*‘JFE"-

KMainframa

« Direct connactions
» Pooled connections

LegStar COBOL Binding Runtime

Starting from a Web Service client, SOAP requests are first processed by a standard Web Service stack.
The LegStar-generated endpoint uses the JAX-WS standard APl to communicate with the SOAP stack.

TheXML payload extracted from SOA P requestsishanded over by JAX-WSto the standard JAXB binding
framework, which usesthe LegStar-generated JAXB classesto parsethe XML and produce avalue object.
The adapter endpoint implementation uses the LegStar COBOL Binding Runtime to transform java value
objects to a mainframe payload. This transformation includes Unicode to EBCDIC conversions, numeric
conversions, REDEFINES decision-making, €tc...

Once data is in mainframe format, the endpoint uses a transport independent layer called LegStar
Mainframe Adapter Runtime to invoke a remote program.

The LegStar Messaging Protocol used by the Mainframe Adapter Runtime is binary and implements a
request/reply exchange pattern. It is designed to reduce the payl oad size and supports multipleinput/output
named structures such as CICS containers. Alternatively, the adapter runtime can use transport specific
messaging protocols such as IBM CICS MQ Bridge.

The actual transport is selected at runtime from a configuration file. The following options are available;
 Socket transport

e HTTP transport

» WehSphere MQ transport

When needed, LegStar provides z/OS modules, written in C/370 for CICS, to handle messaging on the
Mainframe side (Not needed with CICS Websphere MQ Bridge). The CICS footprint of this architecture
isminimal since all SOAP/ XML processing occur off-host.

Any of the available transports can be used in adirect or pooled fashion. Pooling of connections, offered
by LegStar Connection Pooling Engine, allows efficient connection reuse and enhances performances.

Architecture

On the way back, mainframe data is converted to XML and then wrapped in a SOAP reply.

Consume a Web Service or POJO from a
COBOL program

Development tools
There are three steps to achieve outbound access to Web Services or POJOs:

Figure 2.3. Service proxy development steps

XSD or MaFl’?gf ra
WsSDL | y
JAXB
XSD + Classes +
COBOL COBOL
annotations annotations
LegStar | LegStar | Leas
XML Schema to : egStar
" COBOL Structures Traf\gfgsr;ers —| Mainframe Service COBOL
Translator Generator cics
Java class Generator sample
\
@ B e —

The LegStar Xml Schemato COBOL Translator takesaWSDL or XML Schemafile asinput and produces
aMapping XML Schema with COBOL annotations. Alternatively, it can use pure Java objects as input
when the target is a POJO rather than a Web Service.

The developer will typically edit the resulting XML schemato adjust such things as COBOL string sizes
or maximum array sizes, which cannot always be inferred from XML Schema

The second step, using the LegStar COBOL Transformers Generator is the same tool used for adapters.
Theresultisaset of javaclasses, which providesthe conversion capabilities from mainframe datato XML,
JSON or Java.

The third step, the LegStar Mainframe Service Generator, also used for adapters, is used here to produce
a Mainframe Proxy and COBOL CICS sample program. The Mainframe Proxy acts as an intermediary
between the mainframe client program and the target Web Service or POJO at runtime. It can be deployed
asa Servlet.

The COBOL CICS sample program generated can be used to jump start your own mainframe client
programs.

Runtime services

LegStar provides a Mainframe Proxy Runtime to support incoming requests from the mainframe. The
HTTP Transport is the only one available at the moment.

On the mainframe side, you can use CICS DFHWBCLI or EXEC WEB API to send the payload to the
Mainframe Proxy Runtime. All that is required is that the request is an HTTP POST and that the body is
binary (not translated to ASCII) signaled by an application/octet-stream MIME type.

For older versions of CICS without DFHWBCLI or EXEC WEB API, LegStar provides asimple HTTP
client API written in C/370.

Architecture

The CICS program does not directly call the target Web Service/POJO. Rather, the generated Mainframe
Proxy receives the request, which is still in host (EBCDIC) format at this stage. Again, no conversion
occurs on the host significantly reducing the mainframe footprint of this solution.

Transformation from mainframe format to XML is performed by the LegStar COBOL Binding Runtime.

The reguest would flow as depicted in the following diagram:

Figure 2.4. Service proxy runtime

LegSlar JZEE garver, Tomcal, Jatly JAXE | JAX-WS
Mairframe
Client Pro XML Web
ny JAXE valug p Service
program Runtimae object e

Enpaint

o

using HTTP

Mainframe
AP Mainframa ‘pm”
piwm /’-._ @

S (@] oo
ot FESH R T
[=) ; POIO

— abject
HTTP with 1

'.:.lraq,- e
Mainframe e
payload @

LegStar COBOL Binding Runtime

The Mainframe Proxy usesthe standard JAX-WS Client API to perform the call to thetarget Web Service.
Alternatively, when the target is a POJO, the Proxy invokes the POJO method directly. Observe that in
the case of POJOs, there is no need for JAXB at runtime, the only constraint is that the Proxy be able to
locate the POJO in the J2EE server classpath.

Chapter 3. Installation
Installing LegStar

Pre-requisites
Java 1.5+ and ANT 1.6.5+ are both prerequisites for LegStar.
LegStar requires a JDK, or an international version of the JRE, that includes charsets.jar.

Make sure JAVA_HOME and ANT_HOME environment variables are set and that $JAVA_HOME/bin
(%JAVA_HOME%/bin on Windows) and $ANT_HOME/bin (%ANT_HOME%/bin on Windows) are
both in your system path.

The mainframe Service Generator requires JAX-WS 2.1 (JSR 224). The Sun's JAX-WS reference
implementation is shipped with LegStar. You can replace this implementation with any JAX-WS 2.1
compliant provider.

Since Service Generator is modular, there might be more prerequisites depending on your target choice
(Adapter or Proxy) and, if you chose Adapters, what transport you want to use. For each of these choices,
documentation is available either online or in the docs folder.

Installing

Warning: make sure you completely uninstall any previous version before proceeding with a new install.
Download the latest distribution [http://www.legsem.com/legstar/legstar-distribution].

Unzip the binary distribution package into the directory of your choice, referred to as <installDir> in the
following steps.

The directory tree should look like this:

<instal I Dr>
| - - >L1 CENSE
| - ->readne. ht m
| - -><docs>

| - - >*- README
| --><lib>

| -->*.jar
| - - ><sanpl es>

| - -><qui ckstarts>

| - -><adapter_| sfil eae>

| -->build-*. xm
| - - ><cobol >
| -->Isfil eae
| - - ><schema>
| -->Isfil eae. xsd
| - - ><src>

http://www.legsem.com/legstar/legstar-distribution
http://www.legsem.com/legstar/legstar-distribution

Installation

| -->**/*.java
| --><chttprt>
| -->build. xm
| -->l egstar-invoker-config.xm
| -->Isfil eae. properties
| - ->readne. t xt
| - - ><src>
| - -><cnockrt >
| -->l egstar-invoker-config.xm
| - ->readne. t xt
| --><cngrt >
| -->build. xm
| -->l egstar-invoker-config.xm
| -->Isfil eae. properties
| - ->readne. t xt
| - - ><src>
| - -><csokrt>
| -->build. xm
| -->l egstar-invoker-config.xm
| -->Isfil eae. properties
| - ->readne. t xt
| - - ><src>
| - - ><pool i ng>
| - ->I egst ar-engi ne-confi g. xn
| - ->l egstar-pooling-config.xm
| - -><proxy_poj o_j virquer y>
| -->build-*. xm
| - -><java>
| -->*.jar
|--><jcl>
| - - >COBCIVMQ
| - - ><schema>
| - ->j viguery. xsd
| - - ><src>
| -->**/*.java
| - -><proxy_ws_cul tureinfo>
| -->build-*. xm
| --><jcl>
| - - >COBCCULT
| - - ><schema>
| - ->cul tureinfo. xsd
| --><src>
| -->**/*.java
| - - ><webapp>
| - -><j axws-cul t ur ei nf 0>
| - - ><VEEB- | NF>
| - ->web. xm
| - ->sun-j axws. xm
| - - ><war >
| - - >l egst ar - engi ne. war
| - -><zos>
| - -><C370>
|-->*.C
|-->*.H

Installation

| - - ><cobol >
| -->*.chl
| --><JCL>
| -->
| - -><docs>
| - - >* - READMVE

if you plan on using the Service Generation capabilities, copy the content of <installDir>/lib to your J2EE
container shared libraries (ex $CATALINA_BASE/shared/lib).

Uninstalling

To uninstall, remove the <installDir> folder.

Running the ant samples

Service Adapter

From the samples/quickstarts/adapter_|sfileae folder, run command ant -f build-cob2xsd.xml. This should
create a schemafolder with a generated XML schema from the sample cobol sourcein the cobol folder.

Run command ant -f build-coxb.xml from the samples/quickstarts/adapter_Isfileae folder and check the
result. This should create a src folder containing generated JAXB classes and Transformers from the
sample XML Schemain the schemafolder.

From the samples/quickstarts/adapter_|sfileae folder, run command ant -f build-jws2cixs.xml. This should
add a set of javafilesto the src folder, these implement a JAX-WS endpoint. This also creates a webapp
and an ant folders.

From the samples/quickstarts/adapter_|sfileae/ant folder, run command ant -f build-war.xml. This should
generate awar filein the dist folder, ready for deployment.

Deploy the generated war file from the war folder into your J2EE container deployment folder (ex
$CATALINA_BASE/webapps).

See the FAQ [http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/fag.html] for
common deployment issues.

You will notice that ajar fileis also generated in the dist folder. As an aternative to JAX-WSRI (Metro)
you can deploy this jar to Apache AXIS2, servicgjars folder.

Optionally, you can use build-jws-client.xml to generate a Web service client using JAX-WS.

In order to actualy run the deployed Web Service, you need to select a transport and put a customized
version of the legstar-invoker-config.xml configuration file in alocation such as $CATALINA_HOME/
shared/classes.

There are sample invoker configuration files for each of the transports supported in:

» samples/quickstarts/chttprt for HTTP transport

» samples/quickstarts’'cmgrt for WebSphere MQ transport

http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/faq.html
http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/faq.html

Installation

» samples/quickstarts/csokrt for Socket transport

Service Proxy

There are 2 proxy samples, one that consumes a POJO and one that consumes a Web Service.

Service Proxy to a POJO
Change directory to samples/quickstarts/proxy_pojo_jvmaquery/.

The distribution contains a simple POJO caled jvmquery. It is provided as a jar file in
the samples/quickstarts/proxy_pojo_jvmquery/java folder and as source are in samples/quickstarts/
proxy_pojo_jvmaquery/src.

Run command ant -f build-java2cob.xml which generates a COBOL -annotated XML schema named
jvmaquery.xsd in the schema folder.

Each java type, from the jvmquery source, maps to an XML schema complex type. Each XML schema
element has special Cobol annotations with default attributes, such as maximum character string sizes.

Run command ant -f build-coxb.xml from the samples/quickstarts/proxy_pojo_jvmquery folder and check
the result. This should add to the src folder generated JAXB classes and Transformers from the sample
XML Schemain the schemafolder.

From the samples/quickstarts/proxy_pojo_jvmaquery folder, run command ant -f build-cixs2jws.xml. This
should generate a web.xml file in the webapp/cixs-jvmquery/WEB-INF folder, an ant script in the ant
folder and a sample COBOL program in the cobol folder.

From the samples/quickstarts/proxy_pojo_jvmguery/ant folder, run command ant -f build-war.xml. This
should generate awar filein the dist folder, ready for deployment.

Deploy the generated war file from the dist folder into your J2EE container deployment folder (ex
$CATALINA_BASE/webapps).

The sample COBOL program is an almost complete working sample of a proxy client. Y ou can follow
instructionsin the code to add the missing instructions or just run ant -f build-jvmauery-cobol-src.xml that
automatically does that.

Edit the VMQUERY .cbl source and check the WO00-SERVICE-URI, make sure it points to the machine
where you deployed the proxy. Y ou can now upload that program to z/OS, compile and run it. A sample
compilation jcl isin the jcl folder.

Service Proxy to a Web Service

Change directory to samples/quickstarts/proxy_ws cultureinfo/.

Thedistribution containsasimple Web Servicecalled cultureinfo. Itisprovided asawar filein the samples/
quickstarts/proxy_ws_cultureinfo/war folder.

The war file contains asimple JAX-WS endpoint. If the JAX-WS ibraries are not available in your target
J2EE container, you can get them from <installDir>/lib.

Deploy thiswar file to your J2EE container deployment folder (ex SCATALINA_BASE/webapps).

Check the build-xsd2cob.xml inputXsdUri parameter. It assumes the J2EE container you deployed the
target Web Serviceto, islistening on localhost, port 8080. Y ou might need to customize this.

10

Installation

Y ou can now run command ant -f build-xsd2cob.xml which generates a COBOL -annotated XML schema
named cultureinfo.xsd in the schema folder. It does so by reading the target Web Service WSDL.

Each complex typeand element from the source WSDL also existsin the generated mapping XML schema.
Each element al so has special Cobol annotations with default attributes, such as maximum character string
sizes.

Run command ant -f build-coxb.xml from the samples/quickstarts/proxy_pojo_cultureinfo folder and
check the result. Thisshould create asrc folder containing generated JAXB classes and Transformersfrom
the sample XML Schemain the schemafolder.

From the samples/quickstarts/proxy_pojo_cultureinfo folder, run command ant -f build-cixs2jws.xml. This
should generate a web.xml file in the webapp/cixs-cultureinfo/WEB-INF folder, an ant script in the ant
folder and a sample COBOL program in the cobol folder.

From the samples/quickstarts/proxy_pojo_cultureinfo/ant folder, run command ant -f build-war.xml. This
should generate awar file in the dist folder, ready for deployment.

Deploy the generated war file from the dist folder into your J2EE container deployment folder (ex
$CATALINA_BASE/webapps).

The sample COBOL program is an almost complete working sample of a proxy client. You can follow
instructions in the code to add the missing instructions or just run ant -f build-cultureinfo-cobol-src.xml
that automatically does that.

Edit the CULTUREI.chl source and check the W00-SERVICE-URI, make sure it points to the machine
where you deployed the proxy. Y ou can now upload that program to z/OS, compile and run it. A sample
compilationjcl isinthejcl folder.

Installing LegStar modules for z/OS

Pre-requisites

LegStar mainframe programs are mostly written in C/370, therefore Language Environment (LE) is
mandatory.

Some COBOL sample programs are part of the delivery. They were compiled using Enterprise COBOL
for zZ/0OS 3.3.0.

All CICS programs are translated with CICS 6.4.0 COMMAND LANGUAGE TRANSLATOR.

Installing

Download the latest LegStar distribution for z/OS [http://www.legsem.com/legstar/legstar-transport/
legstar-distribution-zos/download.html].

Unzip the binary distribution package into the directory of your choice, referred to as <installDir> in the
following steps.

The directory tree should look like this:

<installDr>

11

http://www.legsem.com/legstar/legstar-transport/legstar-distribution-zos/download.html
http://www.legsem.com/legstar/legstar-transport/legstar-distribution-zos/download.html
http://www.legsem.com/legstar/legstar-transport/legstar-distribution-zos/download.html

Installation

| - --->LEGSTAR. version. C370. XM T

| - --->LEGSTAR. versi on. CNTL. XM T

| ---->LEGSTAR. versi on. COBOL. XM T
| - --->LEGSTAR. versi on. H370. XM T

| - --->LEGSTAR. versi on. LOAD. XM T

| ---->LEGSTAR. version.OBJ. XM T

Upload the XMIT filesinto sequentia files on z/OS.
It isvery important that:
* You use aBINARY transfer type

* Use RECFM=FB LRECL=80 PSfiles as targets

With FTP, you can use command such as:

QUOTE SI TE RECFM-FB LRECL=80 BLKSI ZE=27920
to force new uploaded files to have an acceptable format for the TSO XMIT/RECEIVE protocol.

Under TSO, you can now RECEIVE the XMIT filesinto their target PDSs using a JCL such as:

[1P390OXM T JOB (ACCT#),' USERID ,

/> RESTART=REFRESH,

/1 MSGCLASS=X, NOTl FY=&SYSUI D, PRTY=14, REG ON=0M
//**
/[1* RESTORE XM T FI LES *

//**

[/SUBMT EXEC PQVEI KIEFT1A
[/ SYSTSPRT DD SYSOUT=*
[/ SYSTSIN DD *
RECEI VE | NDATASET(' hl g. LEGSTAR. ver si on. LOAD. XM T')
DSNAME(' hl g. LEGSTAR. ver si on. LOAD)
RECEI VE | NDATASET(' hl g. LEGSTAR. version. OBJ. XM T")
DSNAME(" hl g. LEGSTAR. versi on. OBJ')
RECEI VE | NDATASET(' hl g. LEGSTAR. ver si on. C370. XM T')
DSNAME(' hl g. LEGSTAR. ver si on. C370")
RECEI VE | NDATASET(' hl g. LEGSTAR. ver si on. H370. XM T')
DSNAME(' hl g. LEGSTAR. ver si on. H370")
RECEI VE | NDATASET(' hl g. LEGSTAR. ver si on. CNTL. XM T")
DSNAME(' hl g. LEGSTAR. ver si on. CNTL")
RECEI VE | NDATASET("' hl g. LEGSTAR. ver si on. COBOL. XM T")
DSNAME(" hl q. LEGSTAR. ver si on. COBOL')
/*

Finally in the target CICS region:
* Add hlg.LEGSTAR.version.LOAD to the RPL list

» Customize and run CSD updates from hlg.LEGSTAR.version.CNTL (CICSCSDU)

12

Installation

Compile and link-edit LegStar programs

If, for some reason, le load modules shipped with the LegStar distribution are not suitable, you can chose
to either re-link edit or recompile all the modules.

You might have noticed that the LegStar delivery contains object modules in the
hlq.LEGSTAR.version.OBJ library. So you can re-link without recompiling. If you elect to recompile,
these object modules will be overridden with yours.

if you decide to compile, make sure you have a C/370 compiler.

The hlq.LEGSTAR.version.CNTL library contains a set of cataloged procedures that you need to
customize.

If you elect to recompile, you need to customize:

» CTRNC370: Translates and compiles a CICS C/370 program and pre-links into an object module.
» BCMPC370: Compiles a C/370 program and pre-links into an object module.

for link-editing, you need to customize:

» CLNKC370: Link-edits a CICS object module.

» BLNKC370: Link-edits an object module.

Once the cataloged procedures are ready, you can use the following JCL's to process all LegStar modules
at once:

* BUILDOBJ: Compilesand pre-linksall programs. After you run thisjob, you need to run BUILDLOA.

» BUILDLOA: Link-editsall programs. Y ou can use thisjob on the object modules shipped with LegStar
or after you ran BUILDOBJ.

Installing LegStar plugins for Eclipse

Pre-requisites
LegStar Eclipse plugins require Eclipse version 3.2.1 and above.
Any previous version of the LegStar Eclipse plugins must be uninstalled before installing this version.

At development time, the Eclipse plugins are standalone and don't necessitate that you install the core
product. When you deploy your Transformers and Services though, you will need an easy access to the
LegStar libraries and will find it easier to get them from the core LegStar product that you can get from
thislink [http://www.legsem.com/legstar/legstar-distribution/].

Installing

Within Eclipse, create aremote site using:

Help --> Install New Software... --> Add

or

13

http://www.legsem.com/legstar/legstar-distribution/
http://www.legsem.com/legstar/legstar-distribution/

Installation

Hel p- - >Sof t war e Updat es-->Find and Install-->Search for new features-->New Renot
depending on your Eclipse version.

Name the remote site LegStar and have the URL point to:

http://ww. | egsem com | egst ar/ ecl i pse/ updat e
Select all the features.

Uncomment the "Contact all update sites during install to find required software" check box. If you keep
it checked, it would still work but calculating requirements and dependencies takes a very long time.

If you get complaints about MD5 checksum being incorrect, you probably have a proxy issue. As an
alternative, you can download the update site from this link [http://www.legsem.com/legstar/maven/repo/
com/legsem/legstar/legstar-site/1.5.3/legstar-site-1.5.3.zip], add a local site to Eclipse and install from
there.

Onceingtallation is complete, restart Eclipse and check that the LegStar plugins show up in:

Hel p- - >About Ecli pse SDK-->Installation Details-->Installed Software

From within Eclipse, setup your preferences:

W ndow- - >Pr ef er ences. .. -->LegSt ar

Uninstalling

To uninstall, use:

Hel p- - >About Ecl i pse SDK-->Installation Details-->Installed Software.

then right-click on the feature you wish to uninstall.

14

http://www.legsem.com/legstar/maven/repo/com/legsem/legstar/legstar-site/1.5.3/legstar-site-1.5.3.zip
http://www.legsem.com/legstar/maven/repo/com/legsem/legstar/legstar-site/1.5.3/legstar-site-1.5.3.zip
http://www.legsem.com/legstar/maven/repo/com/legsem/legstar/legstar-site/1.5.3/legstar-site-1.5.3.zip

Chapter 4. Using LegStar

We show 2 use cases in the following sections.

The Adapter use caseisonewhereyou start from acommarea-driven COBOL CICSprogram (LSFILEAE)
and turn it aWeb Service.

The Proxy use caseis one where you started from aWSDL (Microsoft L1V E search) and accessthe LIVE
Web Service from a COBOL CICS program.

Y ou have the choice between using ant scripts and Eclipse plugins.

Using ant scripts

Expose a COBOL program as a Web Service

COBOL structures to XML Schema translation

The process starts by translating COBOL Structuresto XML Schema.

Y ou can use the build-cob2xsd.xml ant script from the samples/quickstarts/adapter_|sfileae folder as your
starting point.

The sample script translates the I sfileae COBOL program from the cobol folder to an XML schemacalled
Isfileae.xsd in the schema folder.

The script executes a single ant task: cob2xsd.
Generally, there are 4 things you will need to check in build-cob2xsd.xml in order to adapt it to your needs:

» Make sure the classpath setting for the cob2xsd task is correct. The fileset should point to the location
whereyou installed LegStar.

» Thetarget parameter should point to the location where you want the translated XML Schemas to go.

* The targetNamespace parameter will become the translated XML Schema target namespace. It must
beavalid URI.

» Thefileset parameter of the cob2xsd ant task must designate one, or more, COBOL source fragments
that you want to translate to XML Schema.

For a complete list of options for the cob2xsd task, you can refer
to CobolStructureToXsdTask [http://www.legsem.com/legstar/legstar-cob2xsd/apidocs/com/legstar/
cob2xsd/task/Cobol StructureToX sdTask.html].

After you run the script, you should get XML Schema files such as|sfileae.xsd which are named after the
COBOL fragments trandl ated.

Open one of these files and notice that each COBOL data structure in the LSFILEAE COBOL source has
been mapped to an XML Schematype. Each Schematype has COBOL annotationsthat serves as mapping
meta-data for other tools.

15

http://www.legsem.com/legstar/legstar-cob2xsd/apidocs/com/legstar/cob2xsd/task/CobolStructureToXsdTask.html
http://www.legsem.com/legstar/legstar-cob2xsd/apidocs/com/legstar/cob2xsd/task/CobolStructureToXsdTask.html
http://www.legsem.com/legstar/legstar-cob2xsd/apidocs/com/legstar/cob2xsd/task/CobolStructureToXsdTask.html

Using LegStar

COBOL Transformers Generation for an Adapter

You can use the build-coxb.xml ant script from the samples/quickstarts/adapter_|sfileae folder as your
starting point. It generates Transformers for the LSFILEAE COBOL program which takes the same input
and output structure called Dfhcommarea.

Generally, there are 4 things you will need to change in build-coxb.xml in order to adapt it to your needs:

Make sure the classpath setting is correct. The fileset should point to the location where you installed
LegStar.

The xsdFile parameter of the jaxbgen ant task must point to the location of you XML Schema with
COBOL annotations.

The jaxbPackageName parameter, for both jaxbgen and coxbgen ant tasks, must be set to the same value
conforming to your naming standards.

The jaxbRootClass parameter of the coxbgen ant task must designate one, or more, JAXB classes that
you want to turn into Transformers.

build-coxb.xml executes 3 steps (or targets in ant parlance):

The first target, generateJAXB, runs the jaxbgen ant task and turns an XML Schema with COBOL
annotations into JAXB classes with COBOL annotations.

For a complete list of options for the jaxbgen task, you can refer
to CobolJAXBGenerator [http://www.legsem.com/legstar/legstar-core/legstar-jaxbgen/apidocs/com/
| egstar/jaxb/gen/Cobol JAX BGenerator.htmi].

The second target, compileJAXB, is a regular java compilation step for the JAXB classes previously
generated.

The third target, generateCOXB, runs the coxbgen ant task and produces the actual Transformers. The
generation process reflects on the JAXB classes compiled at the previous step.

Y ou will notice that the coxbgen ant task takes one or more jaxbRootClass elements. These are needed
to designate which JAXB class (or classes) should become a Transformer. Y ou would generally pickup
the higher classes in the hierarchy but you don't have to.

By default you get Javato Host Transformers only. In addition, you can get Host to XML and Host to
JSON Transformers (use the xmITransformers and jsonTransformers options).

For a complete list of options for the jaxbgen task, you <can refer
to CoxbBindingGenerator [http://www.legsem.com/legstar/legstar-core/legstar-coxbgen/api docs/com/
|egstar/coxb/gen/CoxbBindingGenerator.html].

The Using generated tranformers section gives examples of code you could write to run Transformers.

Mainframe Adapter generation

Thefina step in the processis to generate a Mainframe Adapter, which is a JAX-WS Endpoint.

Y ou can use the build-jws2cixs.xml ant script from the samples/quickstarts/adapter_|sfileae folder as your
starting point.

The sampl e script produces several artifactsand is primarily asingle step script running the jaxws2cixsgen
ant task.

16

http://www.legsem.com/legstar/legstar-core/legstar-jaxbgen/apidocs/com/legstar/jaxb/gen/CobolJAXBGenerator.html
http://www.legsem.com/legstar/legstar-core/legstar-jaxbgen/apidocs/com/legstar/jaxb/gen/CobolJAXBGenerator.html
http://www.legsem.com/legstar/legstar-core/legstar-jaxbgen/apidocs/com/legstar/jaxb/gen/CobolJAXBGenerator.html
http://www.legsem.com/legstar/legstar-core/legstar-coxbgen/apidocs/com/legstar/coxb/gen/CoxbBindingGenerator.html
http://www.legsem.com/legstar/legstar-core/legstar-coxbgen/apidocs/com/legstar/coxb/gen/CoxbBindingGenerator.html
http://www.legsem.com/legstar/legstar-core/legstar-coxbgen/apidocs/com/legstar/coxb/gen/CoxbBindingGenerator.html

Using LegStar

Let usreview theimportant parametersthat you will need to changein build-jws2cixs.xml in order to adapt
it to your needs:

» Make sure the classpath setting for the jaxws2cixsgen task is correct. The fileset should point to the
location where you installed LegStar.

It is aso important that the JAXB and Transformers previously generated be on the classpath.

» jaxws2cixsgen takes a series of file system locations as parameters. Follow the comments in the ant
script to select the correct locations.

» The cixsJaxwsService element is where the actual Adapter is described. The name and packageName
parameters are up to you but must be valid javaidentifier and package name respectively.

» The cixsOperation element is there because you can implement more than one operation for a Service.
You just need a different name (avalid javaidentifier) for each operation.

» ThecicsProgramName parameter must exactly match an existing CICS program. The generated service
will attempt to run that program.

» Theinput and output elements must refer to JAXB typesand package names as generated by the COBOL
Transformers generator. In the case of LSFILEAE, the JAXB type is Dfhcommarea for both input and
output.

* Finally the webServiceParameters element is JAX-WS specific. It specifies the way the service will be
exposed viaWSDL.

For a complete list of options for the jaxws2cixsgen task, you can refer to
Jaxws2CixsGenerator [http://www.legsem.com/legstar/l egstar-cixsgen/l egstar-jaxws-generator/apidocs/
com/legstar/cixs/jaxws/gen/Jaxws2CixsGenerator.html].

After you run the script, you should get anew set of java classes which implement the JAX-WS endpoint.

Besides the JAX-WS java classes, you will also find ant scripts that were generated to help you with
deploying your endpoint. build-jar.xml bundlesthe classesin ajar archive that you could deploy to AX1S2
for instance. build-war.xml bundles awar file suitable for Sun's JAX-WS RI (Méetro).

Once deployed, you can use the Web Service with any SOAP client such as soapUl [http://
WWW.soapui.org/].

Consume a Web Service from a COBOL program
WSDL/XSD Structures Mapping

The process starts by mapping XML schema types, from the target Web Service WSDL, to COBOL data
items.

You can use the build-xsd2cob.xml ant script from the samples/quickstarts/proxy_ws_cultureinfo folder
asyour starting point.

The script executes a single ant task, xsd2cob, which can process WSDL or XML Schema as input to
produce anew XML Schemawith COBOL annotations.

Assuming you want to customize build-xsd2cob.xml for the Microsoft LIV E search SOAP service. Follow
these steps:

17

http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs/com/legstar/cixs/jaxws/gen/Jaxws2CixsGenerator.html
http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs/com/legstar/cixs/jaxws/gen/Jaxws2CixsGenerator.html
http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs/com/legstar/cixs/jaxws/gen/Jaxws2CixsGenerator.html
http://www.soapui.org/
http://www.soapui.org/
http://www.soapui.org/

Using LegStar

» Make sure the classpath setting for the xsd2cob task is correct. The fileset should point to the location
whereyou installed LegStar.

e TheinputXsdUri isthe location of your input WSDL or XML Schema. In the case of Microsoft LIVE
Web Service you can use: http://soap.search.msn.com/webservices.asmxwsdl

» ThetargetX sdFile parameter should point to the file namefor the generated XML Schemawith COBOL
annotations (Can also be afolder name in which case the file name is derived from inputXsduUri).

The targetCobol File parameter should point to the file name for the generated COBOL copybook (Can
aso be afolder name in which case the file name is derived from inputX sdUri).

For a complete list of options for the xsd2cob task, you can refer
to Xsd2CobTask [http://mww.legsem.com/legstar/legstar-xsd2cob-pom/legstar-xsd2cob/api docs/com/
legstar/xsd/def/X sd2CobTask.html].

After you run the script, you should get anew XML Schemafile with the name you specified. Y ou should
also get a COBOL copybook.

Open this file and notice that each root Elements and Complex Types in the WSDL source has been
mapped to a COBOL dataitem. Each Schematype has COBOL annotations that serves as mapping meta-
data for other tools.

Since we started from a WSDL, a certain number of default COBOL data attributes were assigned. For
instance, all character strings are 32 characters long. While this might be an acceptable default, it is not
always the case. In our situation, the application ID (ApplD) must be 40 characters long. We need to
change the COBOL picture from X(32) to X(40).

COBOL Transformers Generation for a Proxy

You can use the build-coxb.xml ant script from the samples/quickstarts/proxy_ws cultureinfo folder as
your starting point. It generates Transformers for the cultureinfo Web Service which takes the GetInfo
structure as its input and the GetlnfoResponse structure as its output.

Refer to COBOL Transformers Generation for an Adapter for adescription of what you need to customize
in build-coxb.xml and how it works.

Assuming you want to customize build-coxb.xml for the Microsoft LIVE search SOAP service. Follow
these steps:

» Change xsdFile parameter of the jaxbgen ant task to point to the location the XML Schema that was
produced with the WSDL/XSD Structures Mapping tool.

e Change the jaxbPackageName parameter, for both jaxbgen and coxbgen, to something like
com.microsoft.schemas.msnsearch.

 Change the jaxbRootClass parameters to Search and SearchResponse, which are the wrapper elements
expected and produced by the target LIVE Web Service.

if you execute the ant script asis, you will get aJAXB error:

[ERROR] A class/interface with the same name "com microsoft. schemas. nsnsearch. Se

Thisis because Microsoft uses the same names for Complex Types and Elementsin their XML Schemas
which confuses JAXB. To solvethis, you can use the typeNameSuffix parameter on the jaxbgen task. The
Task should now look like this:

18

http://soap.search.msn.com/webservices.asmx?wsdl
http://www.legsem.com/legstar/legstar-xsd2cob-pom/legstar-xsd2cob/apidocs/com/legstar/xsd/def/Xsd2CobTask.html
http://www.legsem.com/legstar/legstar-xsd2cob-pom/legstar-xsd2cob/apidocs/com/legstar/xsd/def/Xsd2CobTask.html
http://www.legsem.com/legstar/legstar-xsd2cob-pom/legstar-xsd2cob/apidocs/com/legstar/xsd/def/Xsd2CobTask.html

Using LegStar

<j axbgen
xsdFi | e="LI VESear ch. xsd"
targetDir="src"
j axbPackageNane="com m cr osoft. schemas. nsnsear ch"
gener at el sSet Met hod="t r ue"
serializabl eUi d="1"
t ypeNaneSuf f i x="Type"
/>

Y ou can now execute the ant script.

The Using generated tranformers section gives examples of code you could write to run Transformers.

Mainframe Proxy generation

The final step in the process is to generate a Mainframe Proxy, which is a JAX-WS Client that responds
to Mainframe requests and mediates the call to the target Web Service, for instance the Microsot LIVE
Search Web Service.

Y ou can use the build-cixs2jws.xml ant script from the samples/quickstarts/proxy_ws_cultureinfo folder
asyour starting point.

The sampl e script produces several artifactsand is primarily asingle step script running the cixs2jaxwsgen
ant task.

Let usreview theimportant parametersthat you will need to change in build-cixs2jws.xml in order to adapt
it to your needs:

» Make sure the classpath setting for the cixs2jaxwsgen task is correct. The fileset should point to the
location where you installed LegStar.

It is aso important that the JAXB and Transformers previously generated be on the classpath.

* cixs2jaxwsgen takes a series of file system locations as parameters. Follow the comments in the ant
script to select the correct locations.

e The hostCharset parameter is your mainframe character set (for instance IBM01140). It must be one of
the available java character sets.

* The proxyTargetType parameter is either POJO or WEBSERVICE. In the case of LIVE Search it must
be WEBSERVICE.

» The sampleCobolHttpClientType parameter is the type of COBOL sample that you would like to
generate. This COBOL/CICS code uses HTTP to access the Proxy and therefore your choice depends
on the APIs available to your CICS region. There are 3 possibilities: DFHWBCLI, WEBAPI and
LSHTTAPI.

» The cixsJaxwsService element is where the actual Proxy is described. The name parameter is up to you
but must be valid javaidentifier.

» The cixsOperation element is there because you can implement more than one operation for a Service.
You just need a different name (avalid javaidentifier) for each operation.

» The cicsProgramName parameter designates the sample COBOL client that will be generated.

19

Using LegStar

» Theinput and output elements must refer to JAXB types and package names as generated by the COBOL
Transformers generator. In the case of LIVE Search, the JAXB types are Search and SearchResponse
on input and output respectively.

» Finally the webServiceTargetParameters element gives the datail on how to access the target Web
Service. In the case of LIVE search, it should look like this:

<webServi ceTar get Paraneters
wsdl Url ="htt p://soap. search. msn. conl webser vi ces. asnx?wsdl "
wsdl Tar get Nanespace="http://schenas. m crosoft. conl MSNSear ch/
wsdl Servi ceNane=" MSNSear chSer vi ce"
wsdl Port Name=" MSNSear chPort"
/>

For a complete list of options for the cixs2jaxwsgen task, you can refer to
Cixs2JaxwsGenerator [http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs
com/legstar/cixgjaxws/gen/Cixs2JaxwsGenerator.html].

After you run the script, you should get a new set of artifacts which implement a JAX-WS client.

The Mainframe proxy is a Servlet to be deployed in a J2EE container. The implementation uses Sun's
JAX-WS RI (Metro) as a Web Service client. The build-war.xml ant file that is generated alows you to
bundle the servlet ready for deployment.

The generator also creates a sample COBOL program that behaves asan HTTP client.

The sample COBOL source contains TODO comments to help you locate where you should set values for
the search request and where you can display the results. The LIVE search service requires a developer
ID that you can get for free and enter in the Appl D field.

Thisisan example of code to set the search structures properly:

MOVE ZERO TO Fl ags--C OF COVt REQUEST.
MOVE ZERO TO Sort By--C OF COM REQUEST.
MOVE ZERO TO Resul t Fi el ds--C OF COM REQUEST.
MOVE ZERO TO R-string--C OF COV REQUEST.
MOVE 1 TO Sour ceRequest--C OF COV REQUEST.
* You should specify your owmn M crosoft LIVE application ID
MOVE ' 5588C3ACE949317B3ECAADD®08611BDF5D8D5ZA
TO Appl D OF COM REQUEST.
MOVE ' Mai nfrane' TO Query OF COWVt REQUEST.
MOVE ' en-US' TO Cul turelnfo OF COV REQUEST.
MOVE ' Moderate' to Saf eSearch OF COV REQUEST.
MOVE ZERO TO Latitude OF COM REQUEST.
MOVE ZERO TO Longi tude OF COWt REQUEST.
MOVE ZERO TO Radi us OF COM REQUEST.
MOVE ' Wb' TO R- Source OF COMH REQUEST(1).
MOVE ZERO TO Off set OF COM REQUEST(1) .
MOWE 1 TO R Count OF COW REQUEST(1).
MOVE SPACES TO Fil eType OF COM REQUEST(1).

And these are lines to display the result:

20

http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs/com/legstar/cixs/jaxws/gen/Cixs2JaxwsGenerator.html
http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs/com/legstar/cixs/jaxws/gen/Cixs2JaxwsGenerator.html
http://www.legsem.com/legstar/legstar-cixsgen/legstar-jaxws-generator/apidocs/com/legstar/cixs/jaxws/gen/Cixs2JaxwsGenerator.html

Using LegStar

STRI NG ' | NVOKE- SERVI CE success. First hit is '

DELI M TED BY SI ZE

Descripti on OF COM REPLY(1, 1)

DELI M TED BY SI ZE

| NTO ERROR- MESSAGE.
EXEC CI CS SEND TEXT FROM ERROR- MESSAGE) FREEKB END- EXEC.
DI SPLAY ' Response data | engt h=" WBCLI - RESPONSE- BCDY- LEN.

DI SPLAY ' Sour ceResponse--C ='
Sour ceResponse--C OF COV REPLY.
DI SPLAY ' R-Source(1)=" R-Source OF COMI REPLY(1).
DI SPLAY ' Total (1) =" Total OF COM REPLY(1).
DI SPLAY '"R-Title(l, 1)=" RTitle OF COM REPLY(1, 1).
DI SPLAY ' Description(1l, 1)=
Description OF COM REPLY(1, 1).

After you add these lines of code, you should be able to upload the source onto your mainframe and get
it compiled and defined to your CICS region. Please note that this program calls the CICS DFHWBCLI
program defined in the CICS standard DFHWEB group. Alternatively, LegStar supports the new EXEC
CICS WEB API or even supports older version of CICS withitsown HTTP library.

Using Eclipse plugins
Expose a COBOL program as a Web Service

Start by creating a new standard Java Eclipse Project named CustomerService. It is important that the
project be of a Java nature.

The LegStar options are available from the File->New->Other.. ->LegStar dialog or directly from the
LegStar menu or toolbar buttons:

Figure4.1. LegStar menu and toolbar options

& Java - Eclipse Platform

File Edit Source Refactor Mawvigate Search Project LegStar Bun Window Help

G- ®F

COBOL structures to XML Schema translation

The process starts by trandating COBOL Structures to XML Schema. This is option LegStar->New
structures mapping...

On the Sructures Mapping plug-in first page, type an XML Schema file name making sure the extension
isxsd. The source type will be COBOL for this use case:

21

Using LegStar

Figure4.2. Adapter structures mapping screen select source

Structures mapping

Select one of the available source byvpes, Mapping will be stared in an ¥ML Leg Star

Schema file

Select source bvpe

COBOL source Fragrment w |

Select barget

Conkainer | VW ustomer Service | [Bru:uwse...]

%30 file name | CustomerService, xsd | Creerrite

Mamespace |http:,l',l'l:l:uxl:u.test.Iegstar.l:l:um,l'Custl:umerServiI:e |

®@

Onthe next page, you can either paste COBOL code copied from somewhere else or select afile containing
COBOL source code from the file system. Make sure thisis valid COBOL as the mapping generator is
not afull featured COBOL syntax checker:

22

Using LegStar

Figure 4.3. Adapter structures mapping screen editor

Structures mapping from COBOL fragments
Select the COBOL Fragments to be used Far skruckures mapping. Leg Star
Mapping will be stared in an ©ML Schema File
[Select Cobal fragments from file system
O-———-——- 1-———————- Fo———m - Bo——m-——- d-——--———- L o 7--
01 DFHCOMMARER .
05 COM-NUMEEER PIC 30{&).
0& COM-PERSONAL.
10 COM-MAME PIC Xi{ED).
10 COM-ADDRESS PIC XiE0).
10 COM-FHONE PIC Xi(3).
0& COM-DATE PIC Xig).
0& COM-AMOUNT PIC Xi{3).
0& COM-COMMENT PIC (9.
.
@J Firish l [Cancel

By default, your COBOL code needs to be of afixed format, between columns 8 and 72. Y ou can change
to free format in the Window-> Preferences...->LegStar-> Structures mapping dialog.

After you click finish, an ant script with a name similar to build-schemagen-CustomerService.xsd.xml is
generated and launched. This script generates a new XML Schema and then the Eclipse standard XML
Schema editor is opened and you can check the mapping (COBOL annotations) that was automatically

generated:

23

Using LegStar

Figure 4.4. Adapter structures mapping screen results

& Java - CustomerService/CustomerSeryice.xsd - Eclipse SDK

File Edit Refactor Mavigate Search Project LegStar Run %SD Window Help
il O P H-0-Q HFE- @ & o 5 |8 2ava |
o0 v @
[% Packa 2 = B[] customerService.xsd 2 =0
== = 25
I ; [E[=
= Customerservice Dfhcommarea [=] {comMumber Type)
[sre 3
¢ o
=\ IRE System Library [1av [&] commurnber {comMumber Type)
= ant [€] comPersanal ComPersonal ComPersonal
@ CuskormerService, xsd - E,JcomDate {comDateType) I—E,JcomName (comMameType)
[& commount {comamountType) s [€] comaddress (comBddressType)
[€] comComment {comCommentType) [&] comPhone {comPhoneType)
[=] {comDateType) -
[=] {comamountType)
v
< | >
Design | Source
[&Problems @ Javadoc @Declaration & console E Properties 532 = =~ =08
[€] element
A~
General Elenais Extension Details
Constraints
Documentation (€] cobolElement cobolMarne: |COM-NUMBER |
Extensions levelNumb .|5 |
Delate evelhumber:
Advanced)
pickure: | 96} |
signed: | false |
srceling: | 2 |
totalDigts: | & |
< | = bype: | zoMED_DECIMAL_ITEM | 3
: e
in [8] schema/element

Notice the extensions used to annotate the XML Schema elements with COBOL meta-data.

COBOL Transformers Generation for an Adapter

The wizard is started from the package explorer, by right clicking on the previously generated XML
Schema:

24

Using LegStar

Figure 4.5. Adapter COBOL Transformers generation menu

& Java - CustomerService/CustomerService.xsd - Eclipse SDK

File Edit Source Refactar Mawinate Search Project lenSkar Run %SO ‘Window Help
Mew L4 S
N) . .
| i . - - C RN PR | & Java |
3 . . pen -
Cpen With 4
Package Ex 54 Show In ale+shift+w » =0
J
= A
|5 Copy Chrl+C b
= I):‘/J' CustomerS| 52 Copy Qualified Mame
s paste Chrl+y
B\ JRE Sy K Delete Delete " Dfheommaree
Bk Leasta [&] camMumber {comMumber Type)
£ ant Build Path L4
= Rafact Alb+ShiteT [&] comPersonal ComPersonal
efactor +5hift+
e |EJ comDate {comDateType)
o
g Import. .. (& comamaunt {comAmauntType)
-3 Export...
f Bxpor [€] comComment {comCommentType)
Q§° Refresh F5 3
Assign Working Sets..,
v
Validate b
Run &s L4
Debug As L4 —
Prafile s v Declaration | Bl Cansale 52 a v T
Team v e
Cornpare With 4
Replace With 4
i Le r L bﬁ 15enerate Transformers, ..
R Custi @enerate 4
Source L4

The next page allows you to specify which elements from the source XML Schemawill need to be bound.
All elements are displayed here but if you select aparent element, thiswill automatically select all children
for you, so all you need to do isto select root elements:

25

Using LegStar

Figure 4.6. Adapter COBOL Transformers generation parameters screen

Transformers generator

Select rook elements and kargek location for generated Transformers Leg Star

J8%E pararnekers
®¥ML Schema File name: CuskomerService, xsd

1A%E package name: com.legstar, test,coxb, custamerservice | [Optinns...]

fyvailable rook elements;

Dfhcammarea
ComPersonal

CO¥E package name: | com.legstar . kest, caxb, custamer service, bind | [Optin:nns...]
Target source Folder; | Y CustomerService\sre | [Bru:uwse...]

Target classes Folder: YWCusktomerServicel bin

Finish l [Cancel

In the Adapter case, the mainframe program expects a Dfhcommarea and also produces a Dfhcommarea
so that’ s the only element we need to select.

Thefirst options button allows you to customize the JAXB classes that will be generated.

The second options button allows you to specify additional Transformers to be generated such as XML
and JSON Transformers.

When you click thefinish button, an ant script with aname similar to build-coxb-CustomerService.xsd.xml
is generated and launched. There are two different java packages that are generated by the ant script:

» com.legstar.test.coxb.customerservice contains JAXB classes as generated by Sun’s JAXB XJC utility
but with special COBOL annotations as shown on the next screen.

26

Using LegStar

» com.legstar.test.coxb.customerservice.bind contains the Transformers classes that can be used for fast
marshaling/unmarshaling. Using these classes, there is no need for reflection on the JAXB classes to
get the COBOL meta-data at runtime.

Figure4.7. Adapter COBOL Transformers generation screen results

& Java - CustomerService/src/com/legstar/test/coxb/customerservice/Dfhcommarea. java - Eclipse SDK
Fle Edit Source Refackor Mavigate Search Project LegStar Run ‘Window Help

il P B0 HE @ T LR | & sava |
[# Package Explorer 5 = 0| [J] ofhcommarea.java &2 =0
=| 4;5 b [¥mliccessorType (EmliccessType. FIELR) A
| CustomerService [¥mlType (neme = "DEhcommarea’™, propOrder = {
5 e "oomNurmber ™,
" "
=} com.legstar.test.coxb.customerservice ”c:DmPersﬁnal 4
m ComPersonal.java EOmDAESt;
5 Moombmount ™,
" "
[3] obiectFactory java COMCENIENE

[¥] package-info.java i
public class Dfhconmares

implements Serializable

[=-H} com.legstar.test,coxb.customerservice, bi
m ComPersonalBinding. java
[¥] Dfhcommareainding. java
m DfhcommareaHostToJavaTransfarmer
[¥] DfhcommarealavaToHostTransfarmer
[¥] DfhcommareaTransformers.java

{

private final static long serialVersionlUID = 1L;

ECobolElement (cobolMName = "COM-NUMEER®, type = CobolType. Z0NED DECIMAL ITEM,
Bl JRE System Library [Javase-1.6] protected long conffumber;

B LegStar library container - famlrlement (regquired = true]

& ant @CobolElement {cobolName = "COM-FERSONAL", type = CobolType.SROUF ITEM, level
protected ComPersonal cowmPersonal:

[3nlE lement (regquired = true)

[CobolElement (cobollawe = "COM-DATE™, type = CobolType. ALPHANUMERIC ITEM, le
protected String comlate;

[¥mlElement (required = true)

[CobolElement (cobolNawe = "COM-AMOUNT®™, type = CobolType. ALPHANUMERTC ITEM,
protected 3tring comlmount?

F¥mlE lement (regquired = true)

3 >
¢ pS ELPrDbIams @ Javadoc @)Dec\aratinn Bl Canscle 52 i r5-=08

B

@ CustamerService, xsd

com.legstar kest, coxb.customerservice, Dfhcommarea, java - CustomerService,src

The Using generated tranformers section gives examples of code you could write to run Transformers.
Mainframe Adapter generation

Thefinal step in the processis to generate a Mainframe Adapter, which is a JAX-WS Endpoint.

Thefirst stage isto perform a mapping between the target mainframe program and a Java side operation.
Thisis option LegStar->New operations mapping... On the first page you select a name and location for
the mapping file. Operations mapping files are XML files with the cixs extension.

27

Using LegStar

Figure 4.8. Adapter service generation screen new operation

New operations mapping
Select a Folder and a name For the operations Leg Star
rapping Ffile.

The next step will allow you to name wour
operations and map them to mainframe

Enter ar select the parent folder:

| CuskomerService

CustometrService

Operations mapping file name | CustomerService, cixs

Finish l [Cancel

Clicking on Finish creates the operations mapping file and then opens up a special editor associated with
files with cixs extension:

28

Using LegStar

Figure 4.9. Adapter service generation screen editor

& Java - CustomerService/CustomerService. cixs - Eclipse SDK.

File Edit Source Refactor Mavigate Search Project LegStar Run Window Help
A 4 4 4 3 al 4 ik
I T :ES'&&:@'O'%':E:?@':@O';: oo ﬁ|3¥]ava|
[# Package Expla &3 =0 EOperations mapping editor &3 =0
-
=] <'===D Mapping name: | CuskamerService |
| 2
= = CustomerService
Operation name | Mainframe program — Mainframe channel | Input struckures number | Qukput struckures number
B JRE System Library [1ava Edit
B LegStar library container
(= ant Delete. ..
i &
@ CustarerService, xsd Generate. .
CuskomerService, cixs | Operations
& Problems | @ Javadoc @ Declaration | Bl Console 52 E Properties =0
<terminated > CustomerService build-coxb-CustomerService.xsd.xml [Ant Build] C:\Program Files\Javaljresibinjavaw.exe (5 oct, 2010 17:3
= = .
x& En Sﬁ|l§|l@| = L1
CULLL SUCLLISr UL - =
Total time: 9 seconds -
4] " |5 :)
j CustomerService. cixs - CustomerService :

Click on the add button to start the operations mapping dialog:

Figure 4.10. Adapter service generation screen operation mapping

Operation mapping

Operation name: | Isfileae] |

tMainframe program: | LSFILEAE |

Mainframe channel: | |

Add. .. 14XE Tvpe name JAxE package name rainframe Conkainer
Inpuk struckures: Edit...
Delete. ..
Add. .. JAKE Tvpe name JAxE package name Mainframe Conkainer

Cuakput skrockures: Edit...

Delete. ..

Ok l [Cancel

29

Using LegStar

Type in an operation name and then enter the target mainframe program name. This must correspond to
an actual mainframe program.

The next step isto specify input and output structures. Y ou will have to use the add button again. Y ou are
then presented with the JAXB classes that you generated previously:

Figure4.11. Adapter service generation screen structures mapping

4 Structure mapping

14xE package name: com.legstar.test.coxb.cuskomerservice W |

ComPersonal

Dfhcommarea

JaXE Tvpe name:

Struckure COBOL name: | Dfhcommarea |

Mainframe Conkainer: | |

0K H Cancel]

Thetarget LSFILEAE CICS program is commarea-driven, thereisasingleinput and asingle output which
both happen to be described by the same COBOL structure. So all we haveto do isto select Dfhcommarea
both for input and output.

Figure 4.12. Adapter service generation screen operation mapping done

Operation mapping

Operation name: | sfileas |
Mainframe program: | LSFILEAE |
Mainframe channel: | |
Add. .. 1AXE Tvpe name JAxE package name tainframe Conkainer
Dfhconmimarea com.legstar . test, coxb. cuskomerservice
Input structures:
Add. .. JAKE Tvpe name JAxE package name rMainframe Container
Dfhcanirmarea com.legstar best. coxb. cuskamer service
Cubput skruckures:
[Ok] [Cancel]

This dialog allows you to specify a different input and output structures if needed. It also allows you to
specify more than one input and more than one output as it would be the case for atarget container-driven
program (using CICS channel/containers) for instance.

30

Using LegStar

Back on the editor, you can now click on the generate button and should see the following dialog:

Figure 4.13. Adapter service generation screen select tar get

& Select generation target E'

Reqistered generatars:

Legstar Mainframe Sdapter Generator
LegStar Mainframe Proxy Generator

Ik] [Cancel

The operations mapping editor can be used with different kinds of generators, which are registered
dynamically on your machine. Depending on your configuration, you might have more than one possible
generation target. In our case, we want to generate a Mainframe Adapter. When you select that target and
click the OK button you get thisfinal dialog:

Figure 4.14. Adapter service generation screen parameters

LegStar Mainframe Adapter Generator
Select parameters and destination for generated adapter, which exposes mainframe programs as JAx-WS services Legstar

Generation project

Project name: | CuskormerService |

lava package name: | cam.legstar . test.cixs, customerservice |

Deployment oprions |Target locations | Structures binding locations

Mainframe character set: | IBMO1140

JZEE deplowment location: | Dipervers) TOMTestwehapps

WSOL barget namespace: | hktpeffcixs. best. legstar. comfiCustomer Service |

WS3DL service name: | Customer Servicedervice
‘W3DL port name: | CustomerServicePort
® I Finish l ’ Cancel]

The generation process needs to create various artifacts, including Java classes that implement a JAX-
WS endpoint bundled in a J2EE war file. This dialog allows you to select the target locations and other
options. Most of these options have default values derived from your preferences. You can change the
proposed parameters as you seefit.

31

Using LegStar

Again, the Finish button creates an ant script, which actually generates the artifacts. The ant script has a
name similar to build-jaxws-j2c-CustomerService.xml.

Figure 4.15. Adapter service generation screen results

& Java - CustomerServicelsrcfcom/legstarftest/cixs/customerservice/CustomerService. java - Eclipse SDK E]@]g|
File Edit Source Refactor Mavigate Search Project LegStar Runm Window Help
&Sl $-0-Q- WG ™ P IE (& 3ova |
B R R R R
tg Package Explorer 2 =0 ES Operations mapping editor m CustomerService.java &4 =0
| <f{> i [@Webiervice (name = "CustomerServicePort”, e
2 122 CustomerService targetNamespace = "http://oixs.test. legstar.com/CustomerIery:
= src public interface Customerlervice {
= £} com.legstar.best.cixs. cuskon
m CustomerService. java fEE
m CustomerServiceHastHe * Legitar operation lsfileae.
m CustomerServiceImpl, jav i
m LsfileaeFault.java * regquest = JAXE object mapping the reguest
m LsFileaeFaultino. java b hostHeader an object wapping header parsmeters
[3] LsfileaeHostProgram. jav N @ JAXE ochject mapping the reply
m LsFileaePragramlrvaker. b LzfileseFault if mwethod fails
[3] LsfileaeRequest.java */
m LsfleaeResponse. java @WebMethod (operationName = "lsfileae™, action = "urn:lsfileas")
m ObjectFackory. java EWekResult (name = "Dfhconmares,
[3) package-infa.java targetNamespace = "http://coxb.test. legstar.com/Customer3ervice”)
package. html [@Requestirapper {localName = "LsfileasRequest"”,
3 com.legstar. best.coxb. custo targetMNamespace = "http://ocixs.test. legstar.com/Customer3ervice”,
EE com.legstar.test.caxb.custa className = "com. legstar.test.cixs.customerservice.LsfileasRegue:
=), JRE System Library [JavasE-1.6 @Responselrapper (localName = "LsfileasResponse™,
= Leqstar ibrary container targetMNamespace = "http://cixs.test. legstar.com/Customer3ervice”,
= ant className = "com. legstar.test.cixs.customerservice.LsfileasRespor
(= dist Dfheconmares lsfileae|
2= Servers FWekhParam (name = "Dfhcommarea’,
(= webapp targetMNamespace = "http://coxb.test. legstar.com/ CustomerSe
@ build-jar. xrml Dfhcommares regquest,
@ build-war . xml [@WebhParsam (name = "CustomerServiceHostHeader”, header = true, part
gﬁ CustamerService. cixs targetNamespace = "http://cixs.test.legstar.com/ Customer: Z
[S] CustomerService.xsd < R R S S = »
@ deploy . xml
B_ Problems | @ Javadoc @ Declaration | Bl Console 52 E Properties =0
<terminated > CustomerService build-jaxws-j2c-CustomerService. xml [Ant Build] C:\Program Files| Javaljreéibintjavaw. exe (S ock, 20
% % G oBEE =2 i
() IoLEl LimeET &4 SECUNnasS
: O Writable Smatt: Insert iLgd

Besides the JAX-WS java classes, you will aso find ant scripts that were generated to help you with
deploying your endpoint. build-jar.xml bundlesthe classesin ajar archive that you could deploy to AX1S2
for instance. build-war.xml bundles awar file suitable for Sun's JAX-WSRI (Metro).

Once deployed, you can use the Web Service with any SOAP client such as soapUl [http://
WWW.soapui.org/].

Consume a Web Service from a COBOL program

In this use case we will give a CICS program access to a Web Service (You can also access a POJO
in asimilar fashion). The target Web service will be the LIVE Search API [http://soap.search.msn.com/
webservices.asmx2wsdl].

Start by creating a new standard Java Eclipse Project named LIVESearch. It is important that the project
be of a Java nature.

WSDL Structures Mapping

The process starts by mapping XML schema types, from the target Web Service WSDL, to COBOL data
items. Thisis option LegStar->New structures mapping...

32

http://www.soapui.org/
http://www.soapui.org/
http://www.soapui.org/
http://soap.search.msn.com/webservices.asmx?wsdl
http://soap.search.msn.com/webservices.asmx?wsdl
http://soap.search.msn.com/webservices.asmx?wsdl

Using LegStar

Figure 4.16. Proxy WSDL structures mapping screen select source

Structures mapping
Select one of the available source bypes, Mapping will be stared in an ¥ML Schema file Leg Star

Select source bype

o

Select barget

Container | ILIVESearch | [Browse...]

%30 file name | LIVESearch xsd | [overwrite

Mamespace |http:,l',l'cu:uxb.test.Iegstar.cum,l’LI'v'ESearch |

@

In this use case we select the XSD or WSDL source type since our starting point isaWSDL. As aresult,
the next page will allow you to select afile from your file system or to fetch it directly from the internet,
which we do here by typing the URL for the Microsoft LIVE Web Service: http://soap.search.msn.com/
webservices.asmxwsdl and clicking on the go button:

33

http://soap.search.msn.com/webservices.asmx?wsdl
http://soap.search.msn.com/webservices.asmx?wsdl

Using LegStar

Figure 4.17. Proxy XSD structures mapping screen editor

e M=)t

Structures mapping from XML Schema or WSDL

Select the ¥ML Schema ar WDl ba be used for struckures mapping. Leg Star

Mapping will be stared in an XML Schema file

®ML Schema or WSDL URL (= Select ZML Scherna or WSDL Frar file swsterm. ..

| http:ffsoap.search. msn. comfreebservices asmx fwsdl V| [Gu:u...]

[switch target namespace ko http:fcoxh, best. legstar .comLIVESearch

=?xml]l wersion="1.0" encoding="utf-8" standalone="no"7r L
“Zwsdl:definitions xmlns:wsdl="http://schenas. imlsoap.orgfwsdl/" xmlns:soap="http:, =
=wsdl:typess
<xsd: schema elementFormDefanlt="malified" targetMNamespace="http://schemnas. mi.
=xsd:simpleType name="SourceType"=
“xsd:restriction base="xsd:string"=
=xsd:enameration walue="Wek" />
“xsd:ermeration value="News" /=
=xsd:enameration wvalue="Ads"/ =
“xsd:emmeration wvalue="Inlinelnswers";/=
=xsd:enameration wvalue="PhoneBook" /=
“xsd:emmeration wvalue="WordBreaker" =

| £

|
d

@:‘ [Finish] [Cancel

At thisstage, we are ready to click on the finish button and then edit the generated mapping XML Schema:

Using LegStar

Figure 4.18. Proxy XSD structures mapping screen results

& Java - LIVESearch/LIVESearch.xsd - Eclipse SDK
File Edit Mavigate Search Project LegStar Run 25D ‘Window Help

: [~ P 0@ WG I®Y (R T | 8 1ava |
Pa &I = B || 8] LIvESearch.xsd 2 =0
=] <2==='> = D:'Q ~
=) .b.J LIVESearch SearchRequest [=] 5afeSearchoptions
(# arc EAppID string

=il JRE Syst € Query string [=] SearchFlags

Bl LegStar i

G ant E CultureInfo skring
[S] LivESear wel €] Safesearch SafesearchOptions Location
[€] Flags SearchFlags [Latitude daouble
[Elocation [0..1] Location cocl - [&] Longitude double
[€] Requests ArrayOfSourceReguestRequests [EfRadius [0..1] double

ArrayOfSourceRequestRequests

ESourceRequest [0..*%] SouwrceReques b
< >
Design | Source

[/ Prablems | @ Javadac |[&, Dedaration | & Cansde | E Properties 23 = ¥ =0
[€] element

ExEENSIONS CHLENSIUIT PELdls ¥
General

[8] cobolElement
Constraints cobolMame: | AppID
Documentation levelNumber: | 5

Extensions max0Cours:

Advanced)
minOcours;

picture: w40y
signed:
totalDigits:
< > bype: ALPHAMUMERIC_ITEM v

o* [8] xsd:schemayxsd:complexType

If you have the Eclipse XML Schema Editor installed, you can open the Properties view and select the
extensions element to show and edit the COBOL attributes..

Since we started from a WSDL, a certain number of default COBOL data attributes were assigned. For
instance, all character strings are 32 characters long. While this might be an acceptable default, it is not
always the case. In our situation, the application ID (ApplD in the SearchRequest complex type) must be
40 characters long. We need to change the COBOL picture from X(32) to X(40).

COBOL Transformers Generation for a Proxy

Thewizard is started from the package explorer, by right clicking on apreviously generated XML Schema
and then selecting L egStar->Generate Transformers:

35

Using LegStar

Figure 4.19. Proxy COBOL Transfor mers generation menu

& Java - LIVESearch/LIVESearch.xsd - Eclipse SDK

File Edit Source Befackar Blavinaba Sasech Drodsck lagStar Run X350 window Help
R 3

Y- A NC AR W [gava |

- Qpen F3
2 Qpen wWith 4
{2 package & ShowlIn Alb+shif+w ¥ =

1= Copy Chrl+C 4
= IE‘Jr LIVESea 5= Copy Qualified Name
£ sre | [paste Chr+y

=i RE ¥ Delete Delete SearchRequest
[ank _
@ Build Path 3 skring

Refackar Alk+ShifE+T ¥ skring

)

(i)

Info string

£3y Impart...

&= Export... arch SafeSearchOptions

SearchFlags

i Refresh FS
n [0..1] Location

Assign Wwarking Sets...
ts ArrayOfSourceRequestRequests

Walidate
Run &z
Debug As
Profile fs
Team

Compare With
Replace With

LegSkar el o

| ™

& ‘senerate Transformers. ..

C m (Generake

3
3
.4
.4
.4
.4
3
2
3

Source

Inthis case, theroot structures we are interested in are Search and SearchResponse, which are the wrapper
elements expected and produced by the target Web Service. We select them both.

36

Using LegStar

Figure 4.20. Proxy COBOL Transfor mers generation screen parameters

Transformers generator

Select roak elerments and karget location Far generated Transfarmers Leg Star

JaxE parameters
#ML Schema file name: LIVESearch,xsd

JAxE package name: | com.microsoft, schemas, msnsearch, _2008, 09, fex

| [Opti-:uns. 00]

fvailable rook elements:

MotionThumbnail Tyvpe
ImageTvpe
YWideoType
SourceRequeskType
ArrayOfstringSearchTagFikersType
ResultType
ArrayiOfsearchTagSearchTagsarray Type
SourceResponseType
ArrayOFResultResulksType
SearchRequestType
ArrayOfSourceRequestRequestsType
SearchResponseType
ponseResp

[

||

O%E package name: | com.microsoft, schemas . msnsearch. _2005. _09.fex, bind

| [Optiu:uns. o0]

Target source Folder; | ILIVESearchisrc

| [Brnwse...]

Target classes Folder: \LIVESearchibin

l

Finish l [Cancel

Because Microsoft uses the same names for both Elements and Complex Types, JAXB may complain
about name conflicts. To avoid this, you can customize JAXB using the upper options button and specify

that all Complex Types should be suffixed with characters "Type":

37

Using LegStar

Figure4.21. Proxy COBOL Transformers generation screen JAXB options

& JAXB options

Binding customization
Gemerate Isset methods

Serializable 1D

Type names prefix
Type names suffix Typel
Element names prefix

Element names suffix

Il

(8]4

[Cancel]

After you click finish, two Java packages are created, one for JAXB classes with COBOL annotations and
one for the optimized Transformers classes.

Figure4.22. Proxy COBOL Transformers generation screen results

& Java - LIVESearch/src/com/microsoft/schemas/msnsearchi_2005/_09/fex/SearchRequestType. java - Eclipse SDK

File Edit Source Refactor Navigate Search Project LegStar Run Window Help
1wl & S H-0Q i HE S PIAEE e 5 ! ove |
[# Package Explorer 53 = O | [5] LivESearch.xsd [J] SearchRequestType.java &4 =0
=) <===(> = BEmliccessorType (EmliccessType . FIELD) ~
B'bJLIVESear:h ~ BEm]lType (name = "SearchRecuest”, propOrder = {
=2 src "appld”,
" "
= H3 com.microsoft, schemas.msnse: ”quizy ’I .
[4] AddressType.java "c:uf ;re nhi ‘
safelSearc
m ArrayOffesultResultsType vl - 4
m ArrayOfSearchTagSearchT i ag:., "
m ArrayOfSourceRequestRec " oos 1:n”,
m ArrayOfSourceResponseRe i regecote
m ArrayOfstringSearchTagFilt ! _
m DateTimeType.java public class SearchRequestType
m ImageType]a\:'a implements Serializable
o ¢
m LocationType java
m MationThumbnailType. java . . .
m ObjectFactory.java private final static long serizlVersionUID = 1L;
backage-info jlava = [¥mlElement (name = "AppID"™, required = true)
m ResultTyps]:ava [CobolElement (cobolName = "AppID", type = CobolType. ALPHANUMERTC TTEM, levellhamdoer
) tected St In;
m SafeSearchOptionsType. ja protecte ring app .
m Search.java = E¥mlElement (name = "Query™, required = true)
m Searchlc]unstantsTyps jave [CobolElement (cobollame = "Query", type = CobolType.ALPHANUMERIC ITEM, levellumber
Jjave .
tected St ;
& m SearchRequestType.java protecte £ing query
m SearchResponse. java = [¥mlElement (name = "CultureInfo™, required = true)
m SearchRes; UI‘ISE"[e.java ECobolElement (eobollame = "CultureInfo", type = CobolType.ALPHANUMERIC TTEM, level
m SearchTa $ " 'afa > protected 3tring cultureInfao;
m SourceRegu};thl .iava = EX¥mlElement (name = "Safedearch”, required = true, defaultValue = "Moderace™)
m SourceRe:ponse};zp: java ECobolElement (cobollame = "SafeSearch”™, type = CobolType.ALPHANUMERIC ITEM, levell
m SourceTypeType]aval protected SafelfearchoptionaType safelearch:
m StaticThumbnailType. java . Eamllist .
m VideoType.java ErmlElement (hame = "Flags"™, required = true, defaultValue = "None™) "
2 com.microsaft.schemas.msnse: < >
g E:;SSt::i;r:‘atfrc::tgwj::fsg1‘E] [Z1 Problems | @ tavadac | [, Derlaration | B cansole 52 ® % G SﬁlElEl = s
<terminated> LIYESearch build-coxb-LIvESearch,xsd, xml [ant Build] C:\Program Files\Javaijresibintjavaw.exe (S oct, 2010 14:38:08)
(= ant
[P i s fechol Generating Transformers for [Search, SearchResponse] =
< > £ >
: 0% Wirikable Smart Insert | 211

The Using generated tranformers section gives examples of code you could write to run Transformers.

38

Using LegStar

Mainframe Proxy generation

The last step is also similar to the previous use case. We start by creating a mapping to the Web Service
operation using the LegStar->New operations mapping... option:

Figure 4.23. Proxy service generation screen new operation

New operations mapping
Select a folder and a name for the operations Leg Star
rmapping Ffile.

The next step will allow you to name your
operations and map them to mainframe

Enter ar select the parent folder:

| LIVESearch

-
=¥ LIvESearch

Operations mapping file name | LIVESearch|cixs

® Finish] [Cancel

We now add an operation with the following characteristics:

39

Using LegStar

Figure 4.24. Proxy service generation screen operation mapping done

Operation mapping

Qperation narme: | msseatch |
tainframe program: | MSSEARCH |
Mainframe channel: | |
Add. .. JAKE Type name JA¥E package name Mainframe Conkainer
Search com. microsoft, schemas, msnsearch, _2008....
Input structures:
Add. .. 1AXE Tvpe name JAxE package name tainframe Conkainer
SearchResponse com.microsoft, schemas, msnsearch, _2005..,.
Cwbput struckures:
[84] [Cancel]

The mainframe program in this case is a sample COBOL CICS program that will be generated with the
name that you specify here.

Once you are back on the operations mapping editor, you can click on generate. Y ou can now select the
mainframe proxy option:

Figure 4.25. Proxy service generation screen select tar get

& Select generation target E'

Registered generators:

Leqstar Mainframe Adapker Generator

LegStar Mainframe Proxy Generator

I] [Cancel

The generator dialog will ask you for the target Web Service runtime characteristics. This is needed to
allow the proxy to address the target Web Service at runtime. Y ou can query these parameters from the
WSDL again by entering the URL and clicking on go. If the target WSDL has more than one service or
port, you will haveto select one:

40

Using LegStar

Figure 4.26. Proxy service generation screen parameters

LegStar Mainframe Proxy Generator

Select parameters and destination For generaked Prosxey, which gives mainframe Leg Star

programs access ko Web Services ar POJI0s

JZEE resource exposed ko mainframe
Proxy karget: (%) Web Service () POIO

Wweh service exposed to mainframe

WL URL = Seleck WSDL from File swstern. ..

| http:/isoap.search.msn. comwebservices, asmxrwsd| v| [GD...]

WSDL setvice name: | M3MSearchService |

WSDL port name: | M3MSearchPort |

WSDL namespace: | http: [fschiemas. microsoft, com/MakSearch/2005/09 Fex |

GGenerakion projeck

Project name: | LIVESearch |

Java package name: | com.legstar test. cixs.livesearch |

Deployment optians |Target locations || Struckures binding locations

Mainframe characker set: | IEMOL 140 |

JZEE deplovment location: | Div3ervers\ TOMTestfwebapps |

Mainframe client transpark: (&) HTTP

Proxy client HTTP settings

Host: | 192.168.0.7 |
Port: | 8050 |
Path: | Jc2ws-LIVESearch/LIVESearchProxy |
ser In | |
Password: | |

Sample COBOL dlient type: (3) CICS DFHWECLT () CICS WEE APT () LEGSTAR API

@ [Finish] l Cancel

Clicking the finish button will create various artifacts. The Mainframe proxy is Servlet to be deployedina
J2EE container. The implementation uses Sun's JAX-WS RI (Metro) as a Web Service client. The build-
war.xml ant file that is generated allows you to bundle the servlet ready for deployment.

41

Using LegStar

The generator also creates asample COBOL program that behavesasan HTTP client. The search structure
shows up in the working storage section:

Figure 4.27. Proxy service generation screen results

& Java - LIVESearchfcobol/MSSEARCH.cbL - Eclipse SDK =13
File Edit Mavigate Search Project LegStar Run Window Help
il S iIfH H-0-Q- HFE- @S- EN F %5 Debug |8 Java |
R R CR R
[% Package Explorer 52 = B | [5] LvEsearch,xsd gﬁ Operations mapping editor [Z] MSSEARCH.chl 53 =0
== = .
£ b‘JCustomerService * PRequest parsmeters expected by target web service *
=125 LIvESearch * *
[(2 sre 01 COM-REQUEST.
B JRE System Library [1avasE-1.6] 0z R-Search.
[#-E8, LegStar library container 03 Flags--C PIC 9(9) BINARY.
(= ant 03 SortEvy--C PIC 9(9) EBINARY.
== cobol 03 ResultFields--C PIC 9(9) EINARY.
MMSSEARCH.Cbl 03 B-string--C PIC 9(9) EINARY.
= dist 03 SourceRequest—-C PIC 9(9) BINARY.
#-[= webapp 03 Reguest.
%a build-wear . xrml 04 AppID PIC Hi40).
@deploy.xml 04 Query PIC X(3Z).
£ LvEsearch.cixs 04 CultureInfo FIC X(3Z).
@ LIVESearch.xsd 04 Zafelearch PIC X(32).
04 Flags PIC X(32) OCCURS 1 TC 10 DEPENDING ON
Flags--C.

04 Location.
05 Latitude COMP-Z2.
05 Longitude COMP-Z2.
05 Radius COMP-Z.
04 Regquests.
05 SourceRequest OCCURS 0 TO 10 DEPENDING ON
SourceRegquest—-C.
06 B-Source PIC H(32).
0 Offset PIC 9(9) COMP-5.
08 R—-Count FPIC 9(9) COMP-5.
06 FileType PIC X(32).
06 SortBy FIC X(3&) OCCURI 1 TO 10 DEFPENDING

O SortBy--C. v
r =) — ; =0
¢ > [Q_ Froblems | @ Javadoc @ Declaration | & Console 2 = Propetties 0_—| Error Log
o~ WWritable Insert 1:1

The sample COBOL source contains TODO comments to help you locate where you should set values for
the search request and where you can display the results. The LIVE search service requires a developer
ID that you can get for free and enter in the Appl D field.

Thisis an example of code to set the search structures properly:

MOVE ZERO TO Fl ags--C OF COM REQUEST.
MOVE ZERO TO Sort By--C OF COM REQUEST.
MOVE ZERO TO Resul t Fi el ds--C OF COVt REQUEST.
MOVE ZERO TO R-string--C OF COV REQUEST.
MOVE 1 TO Sour ceRequest--C OF COVt REQUEST.

* You should specify your owmn M crosoft LIVE application ID
MOVE ' 5588C3ACE949317B3ECAADDO08611BDF5D8D5ZA

TO Appl D OF COM REQUEST.

MOVE ' Mai nframe' TO Query OF COM REQUEST.
MOVE 'en-US TO Cul turelnfo OF COM REQUEST.
MOVE ' Moderate' to Saf eSearch OF COV REQUEST.
MOVE ZERO TO Latitude OF COM REQUEST.

42

Using LegStar

MOVE ZERO TO Longi t ude OF COM REQUEST.
MOVE ZERO TO Radi us OF COM REQUEST.

MOVE ' Web' TO R- Sour ce OF COM REQUEST(1).
MOVE ZERO TO OFf set OF COW REQUEST(1).
MOVE 1 TO R-Count OF COM REQUEST(1).

MOVE SPACES TO Fi | eType OF COM REQUEST(1).

And these are lines to display the result:

STRI NG ' | NVOKE- SERVI CE success. First hit is '

DELI M TED BY Sl ZE

Description OF COM REPLY(1, 1)

DELI M TED BY Sl ZE

| NTO ERROR- MESSAGE.
EXEC CI CS SEND TEXT FROM ERROR- MESSAGE) FREEKB END- EXEC.
DI SPLAY ' Response data | engt h=" WBCLI - RESPONSE- BODY- LEN.

DI SPLAY ' Sour ceResponse--C ='
Sour ceResponse--C OF COV REPLY.
Dl SPLAY ' R-Source(1)=" R-Source OF COM REPLY(1).
DI SPLAY ' Total (1) =" Total OF COM REPLY(1).
DI SPLAY 'R-Title(l, 1)=' RTitle OF COM4 REPLY(1, 1).
Dl SPLAY ' Description(1, 1)=
Description OF COM REPLY(1, 1).

After you add these lines of code, you should be able to upload the source onto your mainframe and get
it compiled and defined to your CICS region. Please note that this program calls the CICS DFHWBCLI
program defined in the CICS standard DFHWEB group. Alternatively, LegStar supports the new EXEC
CICSWEB API or even supports older version of CICS withitsown HTTP library.

43

Chapter 5. Wrap up

Thisdocument has described some of the most common use casesfor LegStar. The product being modular,
there are many possibilities to combine the features to satisfy more use cases.

LegStar is a community effort and we encourage you to send your feedback on the mailing list [http:/
groups.google.com/group/legstar-user].

The source code for LegStar is on Google Code [http://code.google.com/p/legstar/]. You can freely use
SVN to access the code base.

You can search bug reports [http://code.google.com/p/legstar/issues/list] and create new ones when
needed.

There is more detailed info on the wiki pages [http://code.google.com/p/legstar/wi/list] that you can
contribute to enhance.

http://groups.google.com/group/legstar-user
http://groups.google.com/group/legstar-user
http://groups.google.com/group/legstar-user
http://code.google.com/p/legstar/
http://code.google.com/p/legstar/
http://code.google.com/p/legstar/issues/list
http://code.google.com/p/legstar/issues/list
http://code.google.com/p/legstar/w/list
http://code.google.com/p/legstar/w/list

Appendix A. Code snippets

Using generated tranformers

Running Host/Java Transformers

The COBOL Transformers Generator produces a set of java classes that you can easily use to turn
mainframe payloads to java data objects.

Thisis sample code showing how you would use agenerated mainframe to javatransformer assuming you
just generated a transformer class called com.legstar.test.coxb.|sfileae. DfhcommareaT ransformers.

/**
* Transform host data and test java data object result.
*
* @aram hostBytes a byte array hol ding the mai nframe payl oad
* @hrows Host TransfornException if transforming fails
*/
public void host ToJavaTransform(final byte[] hostBytes)
t hrows Host Tr ansf or mExcepti on {

Df hcommar eaTr ansforners transforners = new Df hconmar eaTr ansf ormers();
Df hcommar ea df hcommarea = transformers. toJava(host Bytes);
assert Equal s(100, df hconmarea. get ConNurber ());
assert Equal s("TOTO', df hconmar ea. get ConPer sonal (). get ConNane().trinm());
assert Equal s("LABAS STREET", df hconmarea. get ConPer sonal ()
. get ComAddress().trim));
assert Equal s("88993314", df hcomar ea. get ConPer sonal (). get ConPhone()
trin());
assert Equal s("100458", df hcommarea. get ConDate().trin());
assert Equal s("00100. 35", df hconmarea. get ComAnmount ().trin());
assert Equal s("A VO R', df hcommarea. get ConConment ().trin());

}

Conversely, you would produce a byte array with mainframe datafrom ajava data object with code similar
to this:

/**
* Creates a java data object and returns the host data result.
*
* @eturn a byte array hol ding the mainframe payl oad
* @hrows Host TransfornException if transformng fails
*/
public byte[] javaToHost Transform() throws Host TransfornmException {
Df hconmar ea df hcommarea = new Df hcommar ea() ;
df hcommar ea. set ConNunber (100L) ;
ConPer sonal conPersonal = new ConPersonal ();
conPer sonal . set ConNane(" TOTO") ;
conPer sonal . set ConmAddr ess(" LABAS STREET") ;
conPer sonal . set ConPhone("88993314");

45

Code snippets

df hcommar ea. set ConPer sonal (conPer sonal) ;

df hcommar ea. set ConDat e(" 100458") ;

df hcommar ea. set ComArmount (" 00100. 35");

df hcommar ea. set ConConment ("A VO R") ;

Df hconmar eaTransformers transformers = new Df hcommar eaTr ansf orners();
return transforners.toHost (df hcommarea);

}

Generated transformers use the default IBM 01140 US EBCDIC character set for conversions.

Methods toHost and toJava also accept a character set name as a second parameter if you need to use a
different one (just make sure your JRE charsets.jar supports your character set).

Running Host/XML Transformers

In addition to Host/Java transformers, you can generate Host/XML transformers by turning the
xmlTransformers generation option on.

Using these transformers, thisis sample code to turn host datato XML :

/**
* Transform host data and test XML result.
*
* @aram hostBytes a byte array hol ding the mai nframe payl oad
* @hrows Host TransfornException if transforming fails
*/
public void host ToXm Transformn(final byte[] hostBytes)
t hr ows Host Tr ansf or nExcepti on {

Df hconmar eaXm Transformers transformers =

new Df hcommar eaXm Tr ansf orners();
StringWiter witer = new StringWiter();
transformers.toXm (hostBytes, witer);
assert Equal s(

"<?xm version=\"1.0\" encodi ng=\"UTF-8\" "

+ "standal one=\"yes\" ?>"

" <Df hconmar ea xm ns="
"\"http://legstar.com test/coxb/Isfileae\">"
" <ComNunber >100</ ComNunber >"
" <ConPer sonal >"
" <ComNane>TOTO</ ComNamnme>"
" <ConmAddr ess>LABAS STREET</ ComAddr ess>"
" <ConPhone>88993314</ ConPhone>"
" </ ConPer sonal >"
" <ConDat €>100458</ ConDat e>"
" <ComArmount >00100. 35</ ComAnmount >"
" <ContConment >A VO R</ ConComrent >"
"</ Df hcommarea>", witer.toString());

+ F + + + F o+ + o+ o+

Thisis code to turn XML into host data:

46

Code snippets

/**

* Turns an XML into host data.

*

* @eturn a byte array hol ding the mainframe payl oad

* @hrows Host TransfornException if transformng fails

*/
public byte[] xm ToHost Transforn{) throws Host Transf or mExcepti on {

StringReader reader = new StringReader (
"<?xm version=\"1.0\" encodi ng=\"UTF-8\" "
+ "standal one=\"yes\ " ?>"
" <Df hconmar ea xm ns="
"\"http://l egstar.conftest/coxb/|sfil eae\">"
" <ComNunber >100</ ComNunber >"
" <ConPer sonal >"
" <ComNane>TOTO</ ComName>"
" <ConmAddr ess>LABAS STREET</ ComAddr ess>"
" <ConmPhone>88993314</ ConPhone>"
" </ ConPer sonal >"
" <ConDat €>100458</ ConDat e>"
" <ComAnpunt >00100. 35</ ComArmunt >"
" <ConmConment >A VA R</ ConComent >"
+ "</ Df hcommar ea>") ;
Df hcommar eaXm Transfornmers transforners =
new Df hcommar eaXm Tr ansf orners();

return transforners.toHost(new StreanSource(reader));

+ 4+ + + + o+ o+ o+

Running Host/JSON Transformers

In addition to Host/Java transformers, you can generate Host/JSON transformers by turning the
jsonTransformers generation option on.

Using these transformers, thisis sample code to turn host data to JSON:

/**

* Transform host data and test JSON result.
*
* @aram hostBytes a byte array hol ding the mai nframe payl oad
* @hrows Host TransfornException if transformng fails
*/
public void host TolJsonTransforn(final byte[] hostBytes)
t hr ows Host Tr ansf or nExcepti on {

Df hcommar eaJsonTransforners transforners =

new Df hcommar eaJsonTr ansf or mers();
StringWiter witer = new StringWiter();
transformers.toJson(hostBytes, witer);
assert Equal s("{\ " ComNumber\ ": 100, "

+ "\ " ConPersonal \":"

+ "{\"ComNanme\":\"TOTQ ", "

47

Code snippets

+ "\"ComAddr ess\ ":\"LABAS STREET\","
+ "\"ConPhone\":\"88993314\"},"

+ "\"ConDate\":\"100458\","

+ "\" ComAmpunt\":\"00100. 35\ ", "

+ "\"ConComrent\":\"A VOR"}",
witer.toString());

}
Thisis code to turn JSON into host data:

/**

* Turns JSON i nto host data.
*
* @eturn a byte array hol ding the nai nframe payl oad
* @hrows Host TransfornException if transforming fails
*/
public byte[] jsonToHost Transform() throws Host TransfornException {
StringReader reader = new StringReader (
"{\" ComNunber\": 100, "
+ "\ "ConPersonal\":"
“{\"ComName\":\"TOTQO ", "
"\ " ComAddr ess\":\"LABAS STREET\","
"\ " ConPhone\ ":\" 88993314\ "}, "
"\" ConDat e\ ":\"100458\","
"\" ComAnpunt\":\"00100. 35\ ", "
+ "\"ConComment\":\"A VOR"}");
Df hconmar eaJsonTr ansforners transforners =
new Df hcomrar eaJsonTransf ormers();
return transforners.toHost (reader);

+ 4+ + + +

48

